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ABSTRACT

Deploying an offline reinforcement learning (RL) agent into a downstream task is
challenging and faces unpredictable transitions due to the distribution shift between
a offline RL dataset and a real environment. To solve the distribution shift problem,
some prior works aiming to learn a well-performing and safer agent have employed
conservative or safe RL methods in the offline setting. However, the above methods
require a process of retraining from scratch or fine-tuning to satisfy the desired
criteria for performance and safety. In this work, we present a simple model-
based RL method with a transformer and a world model, and propose a Lyapunov
conditioned self-alignment method, which does not require retraining and conducts
the test-time adaptation for the desired criteria. We show that our model-based RL
with the transformer architecture can be described as a model-based hierarchical
RL. As a result, we can combine hierarchical RL and in-context learning for self-
alignment in transformers. The proposed self-alignment framework aims to make
the agent safe by self-instructing with the Lyapunov condition. In experiments, we
demonstrate that our self-alignment algorithm outperforms safe RL methods in
continuous control and safe RL benchmark environments in terms of return, costs,
and failure rate.

1 INTRODUCTION

Ensuring safety in real-world online reinforcement learning (RL) is crucial to making recent advances
in deep RL algorithms (Haarnoja et al., 2018; Janner et al., 2019; Lee et al., 2023; Eysenbach
et al., 2022) more practical, especially when a downstream controller (RL agent) suffers from
underactuated robotics (Tedrake, 2009) or is deployed in the wild. Offline RL (Kumar et al., 2020)
studies have shown that RL agents can be pretrained with well-curated offline RL datasets with human
supervision, such as D4RL (Fu et al., 2021b), RL-unplugged (Gulcehre et al., 2020), and DSRL (Liu
et al., 2023a) to learn better-performing and safer policy by utilizing the existing data. However,
deploying a pretrained offline RL model naively without considering the many facets of unknown
test-time environment is not sufficient to guarantee the safety of downstream controller. Recent two
results (Ghosh et al., 2022b; 2021) have provided some insight into the challenge that a downstream
controller suffer from by highly uncertain and partially observable test time environment. These
studies point out that, even for the same observation, the transition probability can be unpredictable
due to the uncertain nature of the system’s dynamics at each step. Hence, specifying and adapting
the environment transition during test-time for an RL agent is necessary to avoid risky consequence.
(Ghosh et al., 2022b) learned explicit belief as an augmented input for policy to adapt the test-time
environment can help an downstream controller to be safer.

Belief based adaptation, however, requires its own pretraining algorithm from scratch for test-time
adaptation. It is hard to align the pretrained agent to be safe without additional fine-tuning procedure.
Self-alignment by leveraging the pretrained distribution from offline RL dataset could be an easier way
to deploy an agent more safely. Self-alignment (Sun et al., 2023) is one of the alignment approaches
for Large Language Models (LLMs), which induces desirable outputs for specific instruction prompts.
It enables efficient adaptation of LLMs for a particular purpose without fine-tuning by utilizing
the reasoning and generative power of transformer-based large models. To apply self-alignment to
model-based RL agent, we use the proposed transformer-based architecture which is composed of an
agent and a world model to learn policy and predictive model simultaneously, by generating a virtual
imagination of agent trajectory.
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Figure 1: An illustration of the three stages of our Self-Alignment for offline safe RL. We illustrate
one of the safety gym environments in the middle box, where small circles and squares represent
hazards, and a green circle indicates the goal region. At test time for the downstream task, we first
use the RL transformer to generate several imagined trajectories for a given initial state. Secondly,
we compute the occupancy measure and the Lyapunov condition of state-action pairs in imagined
trajectories to determine which trajectory violates the Lyapunov condition the least. For example,
✖ denotes a (s, a) pair that incurs a high cost and violates the Lyapunov condition simultaneously.
Finally, we retrieve the best trajectory segment from the candidate imaginations for prompt and
augment the retrieved segment and initial state for self-instruction at test time.

Transformer-based RL has shown the ability of prompt-based alignment, which enforces transformers
to conduct in-context learning and produce a desirable behavior for a given prompt. For example,
training multi-modal prompts, which consist of text, video, and trajectory data (Jiang et al., 2023a),
enables the model to solve various robot manipulation tasks and shows remarkable generalization
capability for unseen complex tasks. However, the specific structure of the training input data, where
the prompt and trajectory tokens lie in consecutive order, is needed to adapt to a newly defined task.

In this work, we propose a self-alignment technique by self-generated prompt to guarantee the better
safety. Our self-generated prompt for safety is based on Lyapunov condition. To implement self-
alignment for safety, we present a novel formulation of Lyapunov condition as a probabilistic inference
and transformer-based RL world model as a model-based hierarchical RL agent, respectively, to
provide in-context learning based self-alignment. We present an overview of our algorithm, which
we call self-alignment for safety (SAS), in fig. 1. First, the proposed transformer-based model with
the agent and the world model generates several imagined trajectories using the learned policy and
predictive model from the data distribution. We evaluate the safety using the proposed inference
model of the Lyapunov condition, and feed the most likely trajectory in terms of the Lyapunov stability
condition into a prompt of our model. The given prompt instructs our model to act in accordance
with its Lyapunov condition property. We explain this ability of our transformer-based architecture as
a skill-conditioned hierarchical RL in section 5.1. In our experiments, we demonstrate the efficiency
and safe deployment of SAS in 12 Safety Gymnasium environments (Ji et al., 2023) and OpenAI
Gym Mujoco (Brockman et al., 2016). SAS outperforms prior safe RL methods by up to 2 times on
Safety Gymnasium benchmarks and 2 times on Mujoco in terms of failure rate.

2 RELATED WORK

Transformer-based RL. Transformer-based RL (Janner et al., 2021; Chen et al., 2021) has been
emerged by making a connection between pretraining of GPT (Radford et al., 2018) and offline RL
with prior data. Recently, several model-based RL methods with transformers, which are called world
model, lead to sample efficient online RL by leveraging the structure of auto-regressive generation
in terms of imagination in model-based RL, such as TWM (Robine et al., 2023) and IRIS (Micheli
et al., 2023). For predictive model, TWM applies VAE (Kingma & Welling, 2013), and IRIS uses
VQGAN (Esser et al., 2021) to reconstruct the observation. Prompting on transformer-based RL was
also proposed to help task specification with multi-model prompts (Jiang et al., 2023b), and achieve
test-time adaptation by learning with prompts from scratch (Xu et al., 2022b). CDT(Liu et al., 2023b)
is similar to our work since CDT uses decision transformer for offline safe RL by modifying the
DT architecture to feed the cost value to train an offline safe RL agent. Unlike prior works, we aim

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

to align the transformer for model-based RL by providing self-generated instruction for in-context
learning without any fine-tuning.

Safe RL and Lyapunov condition. Lyapunov condition has been applied to safe control (Chang
et al., 2019) and safe RL (Chow et al., 2018) in many different ways. LDM (Kang et al., 2022)
proposed an integration of Lyapunov condition and offline RL to avoid distribution shift for safety.
While safe RL algorithms are usually formulated as constrained MDP, which introduces a control
barrier functions to prevent an RL agent from entering unsafe regions (Bansal & Tomlin, 2021; Ganai
et al., 2023; Kim et al., 2023), we instead focus on validating Lyapunov condition for safety to avoid
unsafe regions caused by the distribution shift (Tedrake, 2009; Bharadhwaj et al., 2020). DCRL (Qin
et al., 2021) is similar to ours in online safe RL, which employs a constraint on the level of state
density to stay in the highly probable states. In contrast, SAS does not require a constrained RL
tuning for transformer or cost, and adapt a safe RL task by self-alignment at test time.

Large model alignment. Alignments in LLMs have been proposed to learn human preference
or make pretrained models safer and more helpful recently (Ouyang et al., 2022). For example, a
pretrained general language assistant can be aligned to be helpful, honest, harmless (HHH) (Askell
et al., 2021). Alignment methods for LLMs can be classified into RLHF (John Schulman, 2022) and
instruction based in-context learning (Sun et al., 2023; Wang et al., 2023). Alignment by instruction
is an emerging technique to align large language models (LLMs) output with a specific desired
behavior by engineering instruction prompt (Brown et al., 2020), RLHF (Ouyang et al., 2022), and
zero-shot reasoner (Kojima et al., 2022). In RL, aligning Large Models (LMs) from pretrained
distribution is natural and well-behaved in LLMs for human preference, but very limited for unseen
task specification by demonstration (Jiang et al., 2023a) and learning for augmented prompt (Xu
et al., 2022b), even though alignment for safety is essential to ensure safety in real-world RL.

3 PRELIMINARIES

Problem Setting. We consider a discounted Markov Decision Process ⟨S,A,R, C,P,PS1 , γ⟩,
where S, and A are observation and action spaces, R : S × A× S → R and C : S × A× S → R
are reward and cost functions, P : S × A → S is the transition operator, PS1 : S → [0, 1] is the
initial state distribution, and γ ∈ (0, 1) is the discount factor. We first define latent skill space Z
and consider two following hierarchical policies. The high-level policy πhigh

θ : S × Z → Z with
parameter θ for skill selection maps the previous latent skill and the observation to the choice of
learned skills z ∈ Z from the pre-collected experience. The low-level policy πlow

ϕ : S ×Z → A with
parameter ϕ interacts with environment with given skill in the agent’s action space.

Density Constrained Safe RL. From a conservatism, constraining the density of states and actions
has been studied to enhance the agent safety. Lyapunov Density Model (LDM) (Kang et al., 2022)
and DCRL (Qin et al., 2021) are offline and online safe RL frameworks, which design the constraint
regions based on density. In the case of offline safe RL, LDM leverages Lyapunov stability condition
to constrain the density of state-action pairs over a long horizon. Finding a control Lyapunov function
for arbitrary MDP is a challenging problem. To tackle this issue, LDM provides a modified version
of Bellman operator which can be interpreted as learning a control Lyapunov function by the offline
data. Specifically, this learning process stitches policies toward more probable terminal states. To
guarantee that an offline RL agent does not escape from sinking into the low density region, we first
introduce the control invariant set and the condition of Lyapunov model of LDM as follows:
Definition 3.1. Let (se,ae) be an equilibrium point and τ = ((s1,a1), · · · , (se,ae)) be an Lyapunov
stable trajectory. For all Lyapunov stable trajectories τ , LDM G(st,at) must satisfy the following:

(1) G(se,ae) = 0, (2) G(st,at) > 0, ∀(st,at) ̸= (se,ae), (3) G(st,at) ≥ G(st+1,at+1).

To learn a valid control Lyapunov function, the LDM backup operator is defined as

TLDMG(s, a) = max{− log ρ(s, a), γmin
a′

G(P(s, a), a′)} (1)

where ρ(s, a) is a density of given state and action. For a Lyapunov density model G(st,at), there
exists a control invariant set for a constant c > 0:

Rc = {(st,at)|G(st,at) ≤ c}.
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Intuitively, a greedy policy of the Lyapunov density model, argmina G(s, a) does not escape from
the control invariant setRc and eventually reaches the equilibrium point where, by the definition, has
the highest density value in the control invariant setRc.

4 MODELING OFFLINE SAFE RL AS DENSITY-BASED LYAPUNOV CONTROL

In this work, we introduce a transformer network based on the Decision Transformer (Chen et al.,
2021) architecture and extend this to include a VAE (Kingma & Welling, 2013) based predictive
model to incorporate imaginations for searching safe candidate trajectories within the model-based
RL framework. The detailed architecture of our transformer model is described in table 5. Since
we pretrain our transformer using the offline RL dataset D, we utilize learned predictive model
distribution and the policy distribution to compute an approximate Control Lyapunov function which
is analogous to LDM. Rather than using one-step density value, we use the occupancy measure
estimate ρ̂ by computing the following equation:

ρ̂(s, a) =

∞∑
t=0

γtρ(st = s,at = a|PS1
, π, T ) =

∞∑
t=0

γtρVAE(st = s|PS1
, π, T )π(at = a|st = s),

where ρVAE and π denotes the density estimation of VAE and the policy. We note that the occupancy
measure estimate ρ̂ can be computed from the generated trajectory τ of autoregressive transformer.

To capture the connection between the density and offline safe RL, we introduce safe RL problem as
the constrained optimization problem as follows:

max
π

JR(π) s.t. JC(π) ≤ d, (2)

where JR(π), JC(π) are the expected discounted sum of reward/cost functions, respectively. We
reformulate eq. (2) in terms of occupancy measure as

max
π

Es,a [ρ
π(s, a)r(s, a)] s.t. Es,a [ρ

π(s, a)C(s, a)] ≤ d.

Let U be the universal set of state-action space and B be the set {(s, a)|(s, a), C(s, a) < Cth} where
Cth is the some threshold of cost which satisfies Cth ≤ d(1 − γ). Assume that the cost value is
bounded as 0 ≤ C(s, a) ≤ Cmax. We define a volume constant α = E(s,a)∼U [1((s, a) ∈ B)], which
is 0 < α < 1. Then, we can write the above inequality as

JC(π) = E(s,a)∼B [ρ̂π(s, a)C(s, a)] + E(s,a)∼BC [ρ̂π(s, a)C(s, a)]

JC(π)− d = E(s,a)∼B [ρ̂π(s, a)C(s, a)]− αd+ E(s,a)∼BC [ρ̂π(s, a)C(s, a)]− (1− α)d

≤ E(s,a)∼B [ρ̂π(s, a)Cth − d] + E(s,a)∼BC [ρ̂π(s, a)Cmax − d] . (3)

We can observe that expert policies in the offline RL dataset D should have low values in BC to
satisfy the constraint inequality of eq. (3) less than zero. Now, we know that reducing the marginal
value of occupancy measure over BC leads to the lower bound of the cost function of π. Suppose
that ρ̂π(s, a) ≤ d

Cmax
for (s, a) ∈ BC . We consider the definition of occupancy measure and assume

that occupancy measure is a continuous function. We have d
Cmax

≤ ρ̂π(s, a) ≤ d
Cth
≤ 1

1−γ for
(s, a) ∈ B, and then get JC(π)− d ≤ 0. This is an intuitive condition to be an expert policy trained
by the constrained RL in eq. (2). Now, we generalize the above condition into more general offline RL
scenario. We consider the occupancy measure of the given offline data, ρdata(s, a) and the occupancy
measure of optimal policy ρ̂π∗ satisfies the single policy concentrability:

ρ̂π∗(s, a)/ρdata(s, a) ≤ D

where all (s, a) ∈ S × A, and D = max
π

Dπ represents the widely-used uniform concentrability
coefficient. This assumption, drawn from (Rashidinejad et al., 2021), is used to incorporate various
sources of offline RL data, including medium-level datasets. To prevent having overestimated density
in the region which might lead to failure, we insert the concentrability coefficient as a margin for
defining the target control invariant set under the pretrained distribution,

Rρ = {(s, a)|ρdata(s, a) ≥
d

CmaxD
}. (4)
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This implies that the offline RL agent can avoid moving toward (s, a) ∈ BC by applying a penalty
using D. Our key idea is to search a density-based Lyapunov stable trajectory sample by the
imagination process of our model-based RL transformer. We first define the Energy E = − log ρ̂data
for convenience. From eq. (1), we define our approximate Lyapunov model as

GSAS(st,at) = log ρ̂data(st,at)−max
π

min
t′

log ρ̂data(st′ , π(st′)) (5)

= min
π

max
t′

E(st′ , π(st′))− E(st,at). (6)

where ρ̂data is the learned distribution of the offline RL dataset distribution ρdata. By randomly
sampling using the VAE and the stochastic policy of our transformer, we generate multiple trajectories
from imagination and compute the optimal sample based on eq. (5) across trajectories and time. Note
that repeating to get more samples induces the tighter upper bound of the control invariant set having
more probable actions. Finally, we define the target control invariant set in terms of ρdata(s, a) as

RSAS
G = {(st,at)|GSAS(st,at) ≤ − log

d

CmaxD
}. (7)

We note that the cost condition of d is applied to the density constraint in terms of control invariant
set. Now, we solve a Lyapunov stable policy in terms of GSAS, then have the offline safe RL policy.

4.1 DENSITY-BASED LYAPUNOV CONTROL AS PROBABILISTIC INFERENCE

To search and infer safe imagined trajectory samples, we propose the probabilistic inference formula-
tion of Lyapunov condition in Definition 3.1.
Theorem 4.1 (Lyapunov Condition Observable). Let two observables Ut and Vt be the indicator
variables

Ut = 1 [GSAS(st,at) > 0] , Vt = 1 [GSAS(st,at)−GSAS(st+1,at+1) ≥ 0] . (8)

The problem of finding a trajectory from Lyapunov stable controller is equivalent to solve the following
inference problem:

max
τ

1

T

∑
t

log (P (Ut = 1|τ)P (Vt = 1|Ut = 1, τ)) , (9)

where T is the length of trajectory τ .

See appendix E for proof. We note that the first Lyapunov condition observable Ut is indirectly
computed by lines 1 to 6 in Algorithm 1. In the first loop of Algorithm 1, among the N iterations, we
select the episode with the lowest maximum energy value reached by each imagined trajectory. In line
6, we set the selected lowest maximum energy Êj as the value of our approximate Lyapunov model
for the equilibrium point, GSAS(se, ae) = minπ maxt′ E(se, ae)− e(se, ae) = Êj −E(se, ae) = 0.
Then, all other N − 1 episodes have steps with G(s, a) < 0 inevitably due to GSAS(se, ae), leading
to violation of the condition Ut = 1. To search for a Lyapunov stable policy which guarantees all
state-action pair elements are in RSAS

G in Equation 7, we assume that a test-time agent can access a set
of previously learned policies, Π = {πi}Ni=1 from pretrained distribution. Each generated trajectory
at i-th iteration, τi, corresponds one-to-one to a certain πi ∈ Π at given initial state s0. As we
increase the number of iterations of the first loop, N →∞, we can get a lower Êj , which leads to
the more probable subsequent (s, a) and equilibrium point. Furthermore, selecting the most probable
index k∗ in the second for-loop implies that we choose the optimal-selection policy which violates
the condition Vt least. Then, the selected π is highly likely to satisfying in the control invariant set
{(s, a)|0 ≤ GSAS(s, a) ≤ Êj}. Now, we rewrite Equation 6 for Algorithm 1 as

GSAS(st,at) = log ρ̂data(st,at)− max
i=1,··· ,N

min
j=1,···T

log ρ̂data(sj , πi(sj))

= min
i=1,··· ,N

max
j=1,···T

E(sj , πi(sj))− E(st,at).

We now demonstrate that Algorithm 1 reduces the probability of escaping from the control invariant
set as the numbers of iterations, N and M for the first and second loops, respectively, increase.

5
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Algorithm 1 Self Alignment To be Safe (SAS). Self-generating prompt for instruction.
Require: Pretrain transformer from D and environment initial state stest

1 ∼ PS1

1: for i = 1, 2, 3, . . . , N do ▷ for condition Ut
2: Sample τi ∼ p(τ |stest

1 ) by imagination
3: Compute Et of each time-step t

4: Êi, ti ← max
t

Et, argmax
t

Et

5: end for
6: j ← argmin

i
Êi

7: Compute an initial prompt p̃1:L ← τj [tj − L : tj ]
8: for k = 1, 2, 3, . . . ,M do ▷ for condition Vt
9: Sample τ ′k ∼ p(τ |p̃1:L, s

test
1 )

10: Compute Et of each time-step t

11: Êk, tk ← max
t

Et, argmax
t

Et

12: vk ←
∑

t Vt
13: end for
14: k∗ ← argmax

k
vk

15: Prompt p1:L ← τ ′k∗ [tk∗ − L : tk∗ ] ▷ self-alignment

Proposition 4.2 (Probability of out-of-distribution trajectory). Assume that the sampled state action
pairs (st, at) in the trajectory is i.i.d. Let τ = {(st, at)}Tt=1 denote the set of state-action pairs in the
trajectory with length T and D is the pretrained distribution of expert trajectories. By Assumption
E.1, the probability that the best trajectory escapes from the target control invariant set in Algorithm
1 is bounded and decreases as the numbers of iterations N,M →∞ as follows:

P [τbest ̸⊂ R] ≤
[E(s,a)∼D[− log ρ̂data(s, a)]

c2

]NT

+ exp

(
−2Mκ2(c2 − c1)

2

TL2

)
(10)

The proof is in appendix E.3.

5 SELF-ALIGNMENT FOR SAFE RL WITH LYAPUNOV CONDITION

When we aim to make a transformer-based model aligned for a downstream task, the model can
learn the given task by conditioning a prompt which is composed of demonstration examples. This
remarkable ability is called in-context learning, which can be explained by the implicit Bayesian
conditional inference with demonstration prompt in NLP domain (Xie et al., 2021). The given
demonstration prompt into transformer predicts an aligned output which is conditioned on the prompt.
The inference probability is defined as the following posterior predictive distribution:

p(output|prompt) =
∫

p(output|prompt, θ)p(θ|prompt)dθ,

where θ is called latent concept. The latent concept θ serves as a parameter determining the transition
of the hidden Markov model p(output|prompt, θ), which corresponds to a learned conditional dis-
tribution of pretraining sequence dataset on a latent concept θ. Then, the conditional inference of latent
concept θ on prompt selects the parameter of pθ(output|prompt) = p(output|prompt, θ)
and makes it possible to generate an aligned output. In this section, we formulate our transformer
as a hierarchical RL and decompose the policy into two policies, high-level and low-level policies.
Analogous to the above implicit Bayesian concept, we now assume that the parameter of high-level
policy corresponds to the latent concept. All proofs in appendix E.

5.1 MODEL-BASED RL WITH TRANSFORMER AS PROBABILISTIC INFERENCE

We extend the probabilistic graphical model of skill-based hierarchical RL to describe our model. We
show that the pretrained transformer can implicitly perform Bayesian inference. To define the world

6
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model as a HMM, we consider a probability distribution of trajectory τ as

p(τ) = p(s1)
∏
t=1

p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1).

𝑠𝑠1 𝑠𝑠2 𝑠𝑠3

𝑧𝑧1 𝑧𝑧2 𝑧𝑧3

𝑎𝑎1 𝑎𝑎2 𝑎𝑎3

𝒪𝒪1 𝒪𝒪2 𝒪𝒪3

Figure 2: The probabilistic graphical
model of model-based hierarchical RL.
Our model is a HMM where Ot is the
optimality variable that correspond to
P (Ut = 1,Vt = 1).

where p(st+1|st,at) denotes the transition probability of
transformer, and we abuse the notation p(z1|s1, z0) as
p(z1|s1) for brevity and clear notation. To understand
this graphical model as a hierarchical RL, we consider
the hidden layer of transformer as a latent skill variable
zt. To show that the transformer has the property of in-
context predictor, we also define the conditional probabil-
ity p(τ |p1:L, s

test
1 ) where stest

1 is the initial state at test-time,
p1:L is a prompt demonstration with length L, as

p(τ |p1:L, s
test
1 ) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ)dθ, (11)

where we define θ as the parameter of high-level policy
πhigh
θ . At test time, we generate an output trajectory start-

ing from stest
1 by predicting the first latent skill variable

ztest
1 with the prompt demonstration p1:L and θ. We can

write the conditional probability p(τ |p1:L, s
test
1 , θ) for a

given θ as

τ ∼
∑

ztest
1 ∈Z

[
p(τ |stest

1 , ztest
1 , θ)p(ztest

1 |p1:L, s
test
1 , θ))

]
=
∑

ztest
1 ∈Z

∏
t=1

p(stest
t+1|stest

t ,atest
t )︸ ︷︷ ︸

VAE decoder

p(atest
t |stest

t , ztest
t )︸ ︷︷ ︸

πlow
ϕ

pθ(z
test
t |stest

t , ztest
t−1)︸ ︷︷ ︸

πhigh
θ

=:
∑

ztest
1 ∈Z

gπθ
(τ, ztest

1 ), (12)

where we abuse the notation pθ(z
test
1 |stest

1 , ztest
0 ) = pθ(z

test
1 |p1:L, s

test
1 ) for clarity. It im-

plies that we have the random skill variable ztest
1 which is sampled by the given the high-

level policy parameter θ. We also note that p1:L is a demonstration state-action sequence,
(s−L+1,a−L+1, s−L+2,a−L+2, · · · , s0,a0). Then, the prompt can be viewed as a concatenation in
front of the following trajectory in Figure 2.

Our goal is to find the safe policy πhigh
θ∗ analogous to the demonstration prompt p1:L. We note

that the pretrained transformer marginalize over the family of high-level policies in the offline
RL dataset as in eq. (11). More specifically, the dataset D is composed of the trajectories from
behavior polices, and then it implies that the transformer learns the distribution from the feasible
high-level policy parameter space. To retrieve θ∗ of the safe high-level policy πhigh

θ∗ corresponding to
a given prompt p1:L, we first define the optimality variable Ot in Figure 2 as Ot = 1 [(st,at) ∈ Ct]

where Ct = {(st,at)|(st,at) ∼
∑

zt,zt−1
πlow
ϕ (at|st, zt)πhigh

θ∗ (zt|st−1, zt−1)}, the set of all possible
state-action pairs with θ∗. We can describe the inference p(Otraj|p1:L, s

test
1 ) as follows:

p(Otraj|p1:L, s
test
1 ) =

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1 )

∏
t=1

p(Ot|stest
t ,atest

t )

)
eL·rL(θ)p(θ)dθ, (13)

where rL(θ) = 1
L log

p(O1:L,stest
1 |θ)

p(O1:L,stest
1 |θ∗) . The prompt (sL−1,aL−1, · · · , s0,a0) is originally from the

high-level policy with θ∗. We have O1:L = 1 when θ = θ∗ is selected and get eL·rL(θ) → 1. Then,
we can retrieve the safe high-level policy parameter of πhigh

θ∗ to the demonstration prompt p1:L by the
above selection property in eq. (13) and regenerate and execute at the test time under θ∗. This differs
from the original implicit Bayesian inference (Xie et al., 2021) in two ways: (1) we introduce the
low-level policy πlow

ϕ (at|st, zt) term that enable the implicit Bayesian inference method to work on
the RL domain with action space; and (2) the transformer inherits the predictive transition model
p(st+1|st,at) to generate an imaginary trajectory coincided with the real environment.
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Figure 3: SAS dodges hazard better. We visualize PointGoal1-v0. Left: The illustrated env.
has 8 fixed hazards, one movable obstacle vase, and one goal position. Middle: We visualize
ρ̂data(s) at each point by using our transformer. Right: We illustrate two trajectories without
self-alignment and our DT+SAS. The landscape visualizes GSAS where the blue color indicates the
sub-level of GSAS. We mark Region Of Attraction (ROA) with blue dot lines, which means a forward
invariant set where we can guarantee the upper bound of density. Red lines means the invalid region
where exceed the 95 percentile of GSAS(st,at), which indicates unsafe region.

5.2 INSTRUCTION PROMPT GENERATION FOR SAFETY

Offering good exemplar in-context demonstrations (prompt) for alignment usually relies on extensive
human supervision. Inspired by Dromedary (Sun et al., 2023) for LLMs, we align our transformer
to act more stable and safer by itself without any human instruction or seed prompts. In algorithm 1,
our Self-Aligning RL agent behavior to be Safe (SAS) method involves the following procedures. 1)
Lyapunov-conditioned instruction generation provides the selection rule for Lyapunov condition
to create an exemplar demonstration for reasoning a safer high-level policy πhigh

θ by imagination of
transformer. To generate instruction demonstration for in-context learning, we follow eq. (9) to satisfy
Lyapunov condition from line 1 to 14. 2) Internal thoughts is the generated behavior trajectory
which already satisfies Lyapunov condition enough in line 7 and 14. We do not need to prepare a few
in-context learning demonstration to generate internal thoughts for the final instruction. 3) Guiding
the final behavior of RL transformer is the final stage with the internal thoughts for in-context
learning demonstrations to align with a safer πhigh

θ by annotating with initial state in line 15.

6 EXPERIMENTS

We demonstrate the performance of SAS in mujoco (Brockman et al., 2016) and Safety
Gymnasium (Ji et al., 2023) to evaluate the three metrics, reward return, cost return, and fail-
ure rate. We use D4RL dataset (Fu et al., 2021a) for mujoco and DSRL (Liu et al., 2023a) for safety
gymnasium. We use normalization of both reward and cost returns. We denote DT as DT+SAS and
CDT as CDT+SAS when we apply SAS. We modify DT (Chen et al., 2021) to predicts next state and
next return-to-go as well as action. In all results, we abbreviate the task name as follows: (PointGoal1,
PG1), (PointPush1, PP1) and (CarButton2, CB2). The detailed experiment setting is in appendix B.

Does the proper internal thought make a safer decision? Overall, DT+SAS shows the lower
cost and failure rate than DT in most environments in table 1. We note that reward may decrease as a
trade-off by Lyapunov condition to reduce the aspect of pursuing high reward in DT. However, in
some tasks, such as PG2, it is surprising that the reward of DT+SAS is higher than DT. In tasks, like
PB1, all metrics, reward, cost and failure rate increase simultaneously. It implies that DT has trained
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Table 1: Ablation study in the Safety Gymnasium. DT+rand involves inserting a random trajectory
into the prompt, and DT+maxmax includes the trajectory with the argmax of the maximum value of
E as the prompt. Bold: the smallest cost among the four models. Blue: DT+SAS has a lower failure
rate than DT. Red: DT+SAS has a higher cost than DT but the reward is also higher.

Environment PG1 PG2 PP1 PP2 PB1 PB2 CG1 CG2 CP1 CP2 CB1 CB2
reward 0.660 0.377 0.218 0.202 0.379 0.495 0.638 0.513 0.35 0.204 0.237 0.212

cost 1.319 2.625 0.927 0.782 1.188 1.309 0.976 1.466 0.678 1.174 1.419 1.045DT
failure 0.883 1.000 0.667 0.875 0.950 0.983 0.917 0.925 0.667 0.950 0.950 0.950
reward 0.655 0.650 0.283 0.242 0.485 0.508 0.666 0.483 0.307 0.218 0.174 0.138

cost 1.185 1.783 0.622 0.639 1.375 1.205 0.846 1.148 0.513 1.158 1.083 0.836DT+SAS(ours)
failure 0.867 0.983 0.767 0.850 0.950 0.967 0.867 0.850 0.483 0.900 0.975 1.000
reward 0.665 0.587 0.303 0.240 0.445 0.462 0.672 0.507 0.311 0.230 0.175 0.111

cost 1.258 1.811 0.678 0.758 1.485 0.960 1.002 1.438 0.549 1.341 1.259 0.963DT+rand
failure 0.900 1.000 0.767 0.875 1.000 0.950 0.867 0.975 0.617 0.950 0.975 0.925
reward 0.644 0.521 0.271 0.200 0.486 0.441 0.636 0.512 0.321 0.206 0.131 0.126

cost 0.990 2.152 0.640 0.730 1.808 1.273 1.034 1.497 0.574 1.271 1.103 0.911DT+maxmax
failure 0.775 1.000 0.767 0.783 1.000 0.950 0.817 0.933 0.625 0.975 0.967 0.975

Table 2: Full Results in Safety Gymnasium. The values are averaged across three different cost
thresholds, 20 evaluation episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents
whose normalized cost is less than 1. Blue: Agents which has highest reward among safe agents.

DT + SAS CDT + SAS CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE DCRL
Task

reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost
PointGoal1 0.66 1.19 0.65 1.27 0.69 1.12 0.65 0.95 0.43 0.54 0.71 0.98 0.74 1.18 0.57 0.35 0.49 1.66 0.24 0.86
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92 0.28 0.26
PointPush1 0.28 0.62 0.26 0.54 0.24 0.48 0.19 0.61 0.13 0.43 0.33 0.86 0.22 0.79 0.2 0.83 0.13 0.83 0.01 0.52
PointPush2 0.24 0.64 0.20 0.53 0.21 0.65 0.18 0.91 0.11 0.8 0.23 0.99 0.16 0.89 0.11 1.04 0.02 1.18 0.02 0.07

PointButton1 0.49 1.38 0.51 1.27 0.5 1.68 0.1 10.5 0.06 0.52 0.24 1.73 0.2 1.6 0.69 3.2 0.13 1.4 0.01 0.48
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 2.47 0.58 4.3 0.15 1.51 0.18 0.64

CarGoal1 0.67 0.85 0.65 0.90 0.66 1.21 0.39 0.33 0.24 0.28 0.47 0.78 0.61 1.13 0.79 1.42 0.35 0.54 0.35 0.88
CarGoal2 0.48 1.15 0.42 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91 0.11 2.51
CarPush1 0.31 0.51 0.31 0.49 0.31 0.4 0.22 0.36 0.14 0.33 0.23 0.43 0.21 0.54 -0.03 0.95 0.23 0.5 -0.1 0.09
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 0.45 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07 -0.13 0.17

CarButton1 0.17 1.08 0.27 0.98 0.21 1.6 0.03 1.38 0.07 0.85 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68 0.12 0.95
CarButton2 0.14 0.84 0.30 1.11 0.13 1.58 -0.13 1.24 -0.01 0.63 0.06 2.13 -0.01 2.29 0.37 12.51 -0.07 1.59 0.09 1.42

insufficiently by evaluating long-horizon ρ̂ enough, so SAS can correct long-term behavior that can
increase reward, but cost also increase by the absence of enough cost information.

Table 3: Performance of the DT and DT+SAS in the MuJoCo
environments with D4RL datasets. Only in this table, we
compute rewards using the normalized scoring method from
the CQL paper (Kumar et al., 2020). Bold: Agents with
lower failure or higher reward.

Hopper Walker2d Humanoid
Environment

expert medium expert medium expert medium
reward 110.7 86.6 107.7 82.2 98.5 40.5

DT
failure 0.05 1 0 0.54 0.20 0.97
reward 110.7 87.5 107.7 89.5 103.5 50.6DT+SAS
failure 0.03 1 0 0.46 0.10 0.87

DT+SAS has the lower cost com-
pared to random trajectory instruc-
tion (DT+rand) in table 1. The cost
values of DT+rand are higher than
DT in half of total safety-gymnasium
tasks. We can confirm that SAS is
a valid self-generated instruction for
DT. SAS uses E in Condition Ut to be
more stable and selects the trajectory
with the minimum value of the max-
imum E among steps in a trajectory.
For ablation study, we also conduct
the case of selecting a trajectory with the maximum value of maximum step E among trajectories
(maxmax). In table 1, it is evident that, compared to the DT+SAS model, DT+maxmax model
exhibits higher cost and failure in the majority of environments. Additionally, the DT+maxmax
model demonstrates lower reward values compared to the DT+SAS model, except in 2 tasks. As seen
in the results of DT+rand and DT+maxmax, our SAS algorithm-based prompting, which verifies the
Lyapunov function, enables the Transformer to make much safer choices during the action selection
process. This demonstrates that providing a prompt generated before interacting with the actual
environment influences the overall performance throughout the episode, much like selecting an
appropriate initial skill in hierarchical RL. In table 3, DT was trained on both medium and expert
datasets. In mujoco, cost is not explicitly provided, so we only report reward and failure. As we
mentioned above, we evaluate the failure when the agent terminated before max episode length.
DT+SAS generally shows higher reward and lower failure compared to DT. In Walker2d, the failure
rate of DT for expert dataset is already 0 with 100 episodes, so we cannot observe the improvement
of SAS. However, for medium dataset, we observe the better performance in both reward and failure,
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Figure 4: The undertrained DT graph illustrates the performance with and without SAS to the
undertrained DT. Without Vt represents the results of the ablation study without Vt in section 5.3. UV
corresponds to SAS, and U represents without applying Vt. The remaining figures are in Appendix C.

which means SAS is also effective in Walker2d. In Humanoid, both in the expert and medium dataset,
DT+SAS outperforms DT in all three metrics. APE-V algorithm (Ghosh et al., 2022a) (belief-based
adaptation) uses offline ensemble C51 with SAC-N to enhance the performance by adaptive training
for downstream task. In walker2d medium APE-V algorithm improved the average return by 2.7%,
but we note that DT+SAS outperform DT by improving 8.9% for the average return in Table 3. SAS
does not require fine-tuning or retraining, but APE-V shows the worse test-time performance.

Does SAS outperform than offline safe RL methods? Since SAS is designed for test time
adaptation of DT, we can apply both DT and CDT for alignment. In table 2, We can see that SAS
method shows safer performance than without SAS, as cost and failure rate decrease in most tasks.
Except for PG1, PP1, and PB1 environments, DT+SAS or CDT+SAS achieves the highest rewards
among all baselines even with cost less than 1. In particular, in PB2, CDT+SAS stands out as
the only safe algorithm demonstrating decent rewards. Compared to baselines, CDT+SAS exhibits
superior performance in CB2, while in CB1, DT+SAS performs remarkably better. When we compare
CDT+SAS with CDT, it is evident that cost consistently decreases. In addition, in six tasks, cost even
decreases falling below 1, which means it lowers the target cost to be safe. SAS ensures that, at test
time, the pretrained DT can be aligned better with the distribution of the offline dataset. When DT
is worse than the collected expert in offline dataset, SAS boost the performance of reward. We also
conduct the case that the Decision Transformer that had not been sufficiently trained (undertrained
DT), and the outcomes are detailed in fig. 4. As observed, while the cost and failure rates experienced
an increase, the reward also increased. Our method is effective in enhancing the reward of a less
trained Decision Transformer at the test time. We utilize the initial prompt derived from Ut and
generate the prompt with Vt. We conducted tests using the initial prompt obtained from Ut directly at
test time, without incorporating Vt. We can observe that the cost decreases in all three environments.
In the case of failure, the failure decreased in all environments except for the CarGoal1 tasks.

Offline RL methods often rely heavily on one-step RL, whereas our SAS approach performs depth-
first search during the inference process through internal thought. This allows for verification of safe
control performance for the entire episode of the selected high-level policy. This advantage explains
why our method outperforms traditional safe RL methods. It’s also important to note that even in
scenarios where cost-based offline safe RL has already been applied to CDT, prompting can further
improve the overall performance throughout the episode which can be seen in table 2.

7 CONCLUSION

Deploying downstream controller with offline RL is an important key to achieving real-world deep
RL practical. Unlike the other machine learning domains, such as NLP, it is hard to collect high
quality real-world dataset for pretraining. To solve this problem, we propose self-alignment method
for transformer based RL to align an offline RL agent to be stable for safety and better performance.
It is hoped that the proposed method may trigger new insights on further improvements in safe
exploration and stable downstream task deployment in RL.
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A MODEL ARCHITECTURE
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𝑁𝑁 ×

Figure 5: The architecture of decision transformer with VAE for model-based RL. The only difference
with decision transformer is the additional linear layer and VAE decoder to predict the next state.
We consider the output of feed-forward layer as the predictor of zt with the parameter θ which
corresponds to the high-level policy, and the combined values of st, zt by the attention and residual
connection are fed into the low-level policy with the linear layer ϕ.

B EXPERIMENT SETTING AND HYPERPARAMETERS

B.1 EXPERIMENT SETTING

We conduct Hopper, Walker2d, and Humanoid in OpenAI Gym, where the agent fails and terminates
when the sum of unhealthy rewards get larger. For Safety Gymnasium, we use two different robots
(Point, Car) in 3 tasks (Goal, Push, Button) with two difficulties (1,2) respectively. In
Goal and Button tasks, an agent navigate to the goal while avoiding touching hazards, and an
agent push a box to the goal in Push task. We denote normalized reward and cost returns as reward
and cost for simplicity, and use failure in Tables for failure rate. If an agent experiences any cost due
to encountering a hazard within an episode or exceeding unhealthy cost for mujoco (terminated),
we considered that episode as a failure episode. The baselines we used are CDT (Liu et al., 2023b),
Imitation Learning (BC-Safe, BC-All(Liu et al., 2023b; Xu et al., 2022a)), Distribution Correction
Estimation (COptiDICE(Lee et al., 2022)), and Q-learning (CPQ, BCQ-Lag, BEAR-Lag(Xu et al.,
2022a)).

B.2 NORMALIZED SCORE

We applied normalization to both reward return and cost return to make it easier to compare for
all environments. Let rmax(M) and rmin(M) denote the maximum reward return and minimum
reward return in the dataset T , respectively. Then, the normalized reward return is computed as:

Rnormalized =
Rπ − rmin(M))

rmax(M)− rmin(M)
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where Rπ denotes the evaluated reward return obtained by the agent. Normalized cost return is
defined as the ratio between the cost return obtained by the agent and the target cost κ:

Cnormalized =
Cπ + ϵ

κ+ ϵ

where ϵ is a small positive number for numerical stability. The values are averaged across three
different cost thresholds, 20 evaluation episodes, and three random seeds.

B.3 DATASET DETAILS

We conducted experiments using the OpenAI Gym’s medium and expert datasets from https:
//github.com/Farama-Foundation/D4RL and the Safety Gymnasium’s expert dataset
from https://github.com/liuzuxin/OSRL/tree/main. Detailed information about
the dataset is presented in Table 4. The Max Cost means the maximum cost return in dataset
trajectories.

Table 4: Dataset details

Benchmark Task Max Timestep Action Space State Space Max Cost Trajectories

Safety Gymnasium

SafetyPointGoal1-v0

1000 2

60 100 2022
SafetyPointGoal2-v0 60 200 3442
SafetyPointPush1-v0 76 150 2379
SafetyPointPush2-v0 76 200 3242

SafetyPointButton1-v0 76 200 2268
SafetyPointButton2-v0 76 250 3288

SafetyCarGoal1-v0 72 200 1671
SafetyCarGoal2-v0 72 250 4105
SafetyCarPush1-v0 88 250 2871
SafetyCarPush2-v0 88 400 4407

SafetyCarButton1-v0 88 250 2656
SafetyCarButton2-v0 88 300 3755

B.4 HYPERPARAMETERS FOR THE EXPERIMENTS

During the training of Decision Transformer, we applied warmup for the first 10000 steps, and we
used the ReLU activation function. Further details about the hyperparameters can be found in table 5.

Table 5: Hyperparameters for the experiments

Common Parameters Safety-Gymnasium Parameters CDT DT
Action hidden size [256, 256] for all methods except CDT, DT Number of layers 3 3
VAE hidden size [400, 400] BCQ-Lag, BEAR-Lag, CPQ Number of attention heads 8 1
Cost thresholds [20, 40, 80] Embedding dimension 128 128
Gradient steps 100000 Batch size 2048 64
[KP , KI , KD] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag Context length K 300 20

Batch size 512 Learning rate 0.0001 0.0001
Actor learning rate 0.0001 Dropout 0.1 0.1
Critic learning rate 0.001 Adam betas (0.9, 0.999) (0.9, 0.999)

C ABLATION STUDIES

C.1 NUMBER OF TRAJECTORIES SAMPLED FOR IMAGINATION

We employ Decision Transformer to imagine multiple trajectories under both condition Ut and
condition Vt. In our case, we sampled 5 trajectories for each condition Ut and Vt. As part of
an ablation study, we compared the results of sampling 100 trajectories in experiment with our
experimental results. As we can see in fig. 6, the experiment revealed that there was not a significant
difference in the model’s performance due to the difference in the number of sampled trajectories. In
PointGoal1 environment, an increase in cost was observed when the number of sampled trajectories
was 100.
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Figure 6: Ablation studies on number of trajectories sampled for imagination. Red bar, blue bar,
green bar is reward, cost, failure score respectively

C.2 TIME STEP LENGTH TO CALCULATE E

We calculated and approximated E from trajectories imagined by Decision Transformer under both
conditions U and V. We conducted experiments with a default time step length of 3 for computing E.
As part of an ablation study, we also experimented with time step lengths of 1 and 10, comparing the
results with our findings, which are presented in fig. 4. In the results for the CarGoal1 environment,
the cost is lowest when the time step length is 10, while in the PointGoal1 environment, it is actually
highest. This indicates that increasing the time step length for calculating E does not noticeably
improve the model’s performance.

C.3 TIME STEP LENGTH OF TRAJECTORY IN PROMPT

We extracted the trajectory from a specific time t to 5 time steps before that from trajectories generated
through Condition Ut and Vt. We then fed this truncated trajectory into the prompt of Decision
Transformer at the test time. As part of an ablation study, we experimented with the time step length
of Decision Transformer’s prompt, setting it to 3 and 10, and the results are presented in fig. 4. For
each time step length of the prompt (3, 5, 10), there are instances where the cost in the experimental
results is the highest, as well as instances where it is the lowest. Hence, it can be concluded that the
time step length of the prompt does not significantly impact the model’s performance.

C.4 NUMBER OF PROMPTS

We proceeded by using a single trajectory fragment generated by our algorithm as the prompt for
Decision Transformer. As part of an ablation study, we compared the performance of our approach
with the method of concatenating three or five trajectory fragments obtained by running our algorithm
three or five times, respectively, and using them as a prompt. The experimental results in fig. 4 show
that the method of using five trajectory fragments as a prompt resulted in higher costs. While there is
some difference in the PointPush2 environment when the number of fragments is 1 or 3, overall, the
performance fluctuates without a clear trend.

C.5 MODEL SIZE OF DECISION TRANSFORMER

We conducted experiments to observe how the effectiveness of SAS varies with the model size of
the Decision Transformer. Starting from the smallest size, the default Decision Transformer, we
experimented with sizes ranging from gpt-mini to larger sizes like gpt2, and the results are depicted
in fig. 4. When examining the PointGoal1 environment, it seems that as the model size increases, the
cost also tends to increase. However, looking at the PointPush2 environment, the opposite trend is
observed, where the model with the smallest size has the highest cost, suggesting that there may not
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be a significant correlation. However, concerning failures, except for the gpt-mini size in PointGoal1,
it can be observed that as the model size increases, failures generally decrease.

D COMPLETE EXPERIMENT RESULTS

D.1 RESULTS FOR ALL THE DATASETS

We present the results for a total of 16 datasets in table 6. These results include an additional
experiment on four Circle tasks (PointCircle1, PointCircle2, CarCircle1, CarCircle2) and eight tasks
in bullet-safety-gym environment(BallRun, CarRun, DroneRun, AntRun, BallCircle, CarCircle,
DroneCircle, AntCircle). In PC2, CC1, and CC2 environments, CDT+SAS exhibited the highest
reward among safe agents. CDT+SAS demonstrates lower costs than CDT in all four environments.

Table 6: Complete evaluation results of the baselines and the Decision Transformer with our method
(DT+SAS) and Constrained Decision Transformer with our method (CDT+SAS) in the Safety
Gymnasium environment. The values are averaged across three different cost thresholds, 20 evaluation
episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents whose normalized cost is
less than 1. Blue: Agents which has highest reward among safe agents

DT + ours CDT + ours CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE
Task

reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost
PointGoal1 0.66 1.19 0.65 1.27 0.69 1.12 0.65 0.95 0.43 0.54 0.71 0.98 0.74 1.18 0.57 0.35 0.49 1.66
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92
PointPush1 0.28 0.62 0.26 0.54 0.24 0.48 0.19 0.61 0.13 0.43 0.33 0.86 0.22 0.79 0.2 0.83 0.13 0.83
PointPush2 0.24 0.64 0.20 0.53 0.21 0.65 0.18 0.91 0.11 0.8 0.23 0.99 0.16 0.89 0.11 1.04 0.02 1.18

PointButton1 0.49 1.38 0.51 1.27 0.5 1.68 0.1 10.5 0.06 0.52 0.24 1.73 0.2 1.6 0.69 3.2 0.13 1.4
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 2.47 0.58 4.3 0.15 1.51
PointCircle1 0.69 1.81 0.54 0.21 0.59 0.69 0.79 3.98 0.41 0.16 0.54 2.38 0.73 3.28 0.43 0.75 0.86 5.51
PointCircle2 0.42 1.69 0.63 0.47 0.64 1.05 0.66 4.17 0.48 0.99 0.66 2.6 0.63 4.27 0.24 3.58 0.85 8.61

CarGoal1 0.67 0.85 0.65 0.90 0.66 1.21 0.39 0.33 0.24 0.28 0.47 0.78 0.61 1.13 0.79 1.42 0.35 0.54
CarGoal2 0.48 1.15 0.42 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91
CarPush1 0.31 0.51 0.31 0.49 0.31 0.4 0.22 0.36 0.14 0.33 0.23 0.43 0.21 0.54 -0.03 0.95 0.23 0.5
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 0.45 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07

CarButton1 0.17 1.08 0.27 0.98 0.21 1.6 0.03 1.38 0.07 0.85 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68
CarButton2 0.14 0.84 0.30 1.11 0.13 1.58 -0.13 1.24 -0.01 0.63 0.06 2.13 -0.01 2.29 0.37 12.51 -0.07 1.59
CarCircle1 0.41 1.84 0.47 0.52 0.6 1.73 0.72 4.39 0.37 1.38 0.73 5.25 0.76 5.46 0.02 2.29 0.7 5.72
CarCircle2 0.63 1.69 0.56 0.62 0.66 2.53 0.76 6.44 0.54 3.38 0.72 6.58 0.74 6.82 0.44 2.69 0.77 7.99

BallRun 0.99 1.6 0.04 0.29 0.39 1.16 0.6 5.08 0.27 1.46 0.76 3.91 -0.47 5.03 0.22 1.27 0.59 3.52
CarRun 8.12 1.06 0.72 0.39 0.99 0.65 0.97 0.33 0.94 0.22 0.94 0.15 0.68 7.78 0.95 1.79 0.87 0

DroneRun 0.76 1.58 0.33 0.78 0.63 0.79 0.24 2.13 0.28 0.74 0.72 5.54 0.42 2.47 0.33 3.52 0.67 4.15
AntRun 1.08 2.43 0.32 0.14 0.72 0.91 0.72 2.93 0.65 1.09 0.76 5.11 0.15 0.73 0.03 0.02 0.61 0.94

BallCircle 0.81 1.41 0.32 0.38 0.77 1.07 0.74 4.71 0.52 0.65 0.69 2.36 0.86 3.09 0.64 0.76 0.7 2.61
CarCircle 0.85 1.76 0.19 0.22 0.75 0.95 0.58 3.74 0.5 0.84 0.63 1.89 0.74 2.18 0.71 0.33 0.49 3.14

DroneCircle 0.82 1.55 0.51 0.42 0.63 0.98 0.72 3.03 0.56 0.57 0.8 3.07 0.78 3.68 -0.22 1.28 0.26 1.02
AntCircle 0.59 1.18 0.26 0.34 0.54 1.78 0.58 4.9 0.4 0.96 0.58 2.87 0.65 5.48 0 0 0.17 5.04

Table 7: The modified version of Table 2 with standard deviation across 3 cost thresholds, 20
evaluation episodes, and 3 random seeds.

Task
CDT CDT+ours DT DT+ours

reward cost reward cost reward cost reward cost
mean std mean std mean std mean std mean std mean std mean std mean std

PointGoal1 0.69 0.007 1.12 0.037 0.65 0.007 1.27 0.062 0.66 0.02 1.32 0.31 0.66 0.03 1.19 0.15
PointGoal2 0.59 0.017 1.34 0.054 0.52 0.036 0.94 0.158 0.38 0.02 2.63 0.05 0.65 0.09 1.78 0.17
PointPush1 0.24 0.012 0.48 0.023 0.26 0.027 0.54 0.019 0.22 0.06 0.93 0.21 0.28 0.01 0.62 0.10
PointPush2 0.21 1.363 0.65 31.063 0.20 0.038 0.53 0.089 0.20 0.08 0.78 0.45 0.24 0.06 0.64 0.09

PointButton1 0.5 0.006 1.68 0.049 0.51 0.026 1.27 0.044 0.38 0.04 1.19 0.18 0.49 0.05 1.38 0.21
PointButton2 0.46 0.019 1.57 0.047 0.41 0.019 0.98 0.026 0.50 0.06 1.31 0.14 0.51 0.00 1.14 0.13

CarGoal1 0.66 0.008 1.21 0.057 0.65 0.008 0.90 0.035 0.64 0.02 0.98 0.12 0.67 0.03 0.85 0.16
CarGoal2 0.48 0.032 1.25 0.095 0.42 0.032 0.98 0.047 0.51 0.04 1.47 0.32 0.48 0.03 1.15 0.20
CarPush1 0.31 0.018 0.4 0.068 0.31 0.018 0.49 0.097 0.35 0.07 0.68 0.22 0.31 0.01 0.51 0.15
CarPush2 0.19 0.022 1.3 0.081 0.21 0.023 0.75 0.120 0.20 0.03 1.17 0.26 0.22 0.01 1.16 0.26

CarButton1 0.21 0.014 1.6 0.106 0.27 0.081 0.98 0.006 0.24 0.04 1.42 0.04 0.17 0.03 1.08 0.17
CarButton2 0.13 0.031 1.58 0.034 0.30 0.009 1.11 0.025 0.21 0.04 1.05 0.21 0.14 0.03 0.84 0.08
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D.2 ADDITIONAL COMPARISON WITH SOTA OFFLINE RL METHODS AND OFFLINE META-RL

We note that our DT+SAS which uses the pretrained DT without cost training data outperforms the
above SOTA offline safe RL methods. Moreover, we provide the comparison with CQL, SAC-n,
and APE-V which is the online (few-shot) adaptation method for the offline RL algorithm in the
table below. We note that our method shows the better improvement compared to the reported value
of SAC-n → APE-V in APE-V paper. However, the target task of offline meta-RL focuses on the
adaptation performance when the goal of the target task changes significantly, which differs critically
from measuring the generalization performance that is the aim of our paper, making it challenging to
conduct additional experiments.

Table 8: Experiment results with CQL algorithm (Kumar et al., 2020) and APE-V algorithm (Ghosh
et al., 2022a) in D4RL (Fu et al., 2021b) datasets.

Task Name CQL DT DT+ours SAC-N APE-V
reward reward failure reward failure improve(%) reward reward improve(%)

hopper-medium-expert 96.9 111.8 0.1 110.4 0.05 -1.25 110 105.7 -3.91
hopper-medium-replay 86.3 94.3 0 97.3 0 3.18 101.8 98.5 -3.24

walker2d-medium-expert 109.1 108.3 0 107.5 0 -0.74 116 110 -5.17
walker2d-medium-replay 76.8 43.9 1 69.1 0.6 57.4 78.7 82.9 5.34

E PROOF

We first provide technical results in the main paper. We consider MDP as a graphical model, then
we can augment the graphical model with an optimality variable Ot, which denotes 1 [(st,at) ∈ Ct]

where Ct = {(st,at)|(st,at) ∼
∑

zt,zt−1
πlow
ϕ (at|st, zt)πhigh

θ∗ (zt|st−1, zt−1)}, the set of all possible
state-action pairs with θ∗. In MDP, we can get high rewarded states in some transitions and hope to
allocate high weight for high-rewarded trajectories and low weight for suboptimal trajectories. To
denote this high rewarded time-step, we use the above optimality variable Ot.

By defining the condition probability of prompt p1:L given high-level policy πhigh
θ , we leverage rL(θ)

to make sure that the well-designed prompt is selected when it is from underlying the safe high-level
policy πhigh

θ∗ . In details, the length variable L can be composed of two conditions, the length of prompt
and the number of prompt. We conduct the ablation study for this condition in fig. 4. We note that
we can have high probability of p(Ot = 1|zt) = exp(r(πhigh

θ )) when we provide the most matching
prompt p∗ with the underlying πhigh

θ∗ .

E.1 PROOF OF EQ. (13)

To show the derivation, we start from Equation 1,

p(τ |p1:L, s
test
1 ) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ)dθ.

To check the optimality between the generated trajectory and the prompt, we prove the following
equation.

p(Otraj|p1:L, s
test
1 ) =

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1 )

∏
t=1

p(Ot|stest
t ,atest

t )

)
eL·rL(θ)p(θ)dθ,

where ∑
ztest
1 ∈Z

∏
t=1

p(stest
t+1|stest

t ,atest
t ) p(atest

t |stest
t , ztest

t )︸ ︷︷ ︸
πlow
ϕ

pθ(z
test
t |stest

t , ztest
t−1)︸ ︷︷ ︸

πhigh
θ

=:
∑

ztest
1 ∈Z

gπθ
(τ, ztest

1 )
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By the Bayes’ rule and the law of total probability, we have

p(Otraj|p1:L, s
test
1 ) =

∫
θ

p(τ |p1:L, s
test
1 , θ)p(θ|p1:L, s

test
t )dθ

∝
∫
θ

p(τ |p1:L, s
test
1 , θ)p(p1:L, s

test
t |θ)p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1 )

∏
t=1

p(Ot|stest
t ,atest

t )

)
p(p1:L, s

test
t |θ)

p(p1:L, s
test
t |θ∗)

p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1 )

∏
t=1

p(Ot|stest
t ,atest

t )

)
p(O1:L, s

test
t |θ)

p(O1:L, s
test
t |θ∗)

p(θ)dθ

=

∫
θ

∑
ztest
1 ∈Z

(
gπθ

(τ, ztest
1 )

∏
t=1

p(Ot|stest
t ,atest

t )

)
exp (L · rL(θ))p(θ)dθ.

By the definition of rL(θ), we can show that under distinguishability for all πhigh
θ ̸= πhigh

θ∗ , then
rL(θ)converges to a negative constant, and by letting L → ∞ we have exp(rL(π

high
θ )) = 0 for all

πhigh
θ ̸= πhigh

θ∗ and exp(r(πhigh
θ )) = 1 for πhigh

θ = πhigh
θ∗ . The more detailed derivation of distinguisha-

bility is described in (Xie et al., 2021). In addition, we can note that the probability graphical model
has the term p(zt|st, zt−1), which samples the latent skill variable when st is given. By the definition
of high-level policy, we now can call the transformer with latent variables is intrinsically hierarchical
RL with high-level policy πhigh

θ = p(zt|st, zt−1).

As we can explain our transformer as implicit Bayesian inference of in-context learning (Xie et al.,
2021), we now have that the safe high-level policy when we successfully sample a trajectory instruc-
tion in algorithm 1 to satisfy Lyapunov conditions perfectly in every time step. Then, the in-context
learner RL model can also predict action at the given test-time initial state with Lyapunov stable
policy.

E.2 PROOF OF THEOREM 4.1

Since Ut and Vt are both optimality variable to indicate their Lyapunov condition, we apply the
probability inferecne for RL as follows:

log p(U1:T ,V1:T |τ) = log

(
p(s1)

∏
t=1

p(Ut,Vt|st,at)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)

= log

(∏
t=1

p(Ut,Vt|st,at)

)
+ log

(∏
t=1

p(s1)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)

=
∑
t=1

log (p(Ut,Vt|st,at)) + log

(∏
t=1

p(s1)p(st+1|st,at)p(at|st, zt)p(zt|st, zt−1)

)
=
∑
t=1

log (p(Ut,Vt|st,at)) + C.

When all Ut,Vt are 1, then we know that the trajectory gurantess the Lyapunov condition perfectly.
Recall that the trajectory is asymptotically stable if the following conditions are satisfied as described
in Definition 3.1.

(1) G(se,ae) = 0, (2) G(st,at) > 0, ∀(st,at) ̸= (se,ae), (3) G(st,at) ≥ G(st+1,at+1).

Since we design our Lyapunov function GSAS as

GSAS(st,at) = min
π

max
t′

E(st′ , π(st′))− E(st,at),

the equilibrium point is defined as GSAS(se, ae) = minπ maxt′ E(se, ae) − E(se, ae) = Êj −
E(se, ae) = 0. Then, the condition Ut = 1 corresponds to the condition (2): G(st, at) >
0,∀(st,at) ̸= (se,ae), and the condition Vt = 1 corresponds to G(st,at) ≥ G(st+1,at+1).
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If we choose the distributions of Ut,Vt as

p(Ut = 1|st, at) ∝ exp (1 [GSAS(st, at) > 0]) ,

p(Vt = 1|st, at) ∝ exp (1 [GSAS(st, at)−GSAS(st+1, at+1) ≥ 0]) ,

then, we can rewrite the above equation as∑
t=1

log p(Ut,Vt|st,at) =
∑
t=1

log p(Vt|st,at,Ut)p(Ut|st,at)

∝
∑
t=1

1 [GSAS(st, at) > 0] +
∑
t=1

1 [GSAS(st, at)−GSAS(st+1, at+1) ≥ 0]

Then, the maximizing the above equation implies that the trajectory get close to the Lyapunov
condition.

E.3 PROOF OF EQ. (10)

The goal of our method is to keep occupancy measures in the distribution of the target control-
invariant setR = {(st, at)|c1 ≤ E(st, at) ≤ c2} where E(st, at) = − log ρ(st, at) for utilizing the
pretrained expert distribution. As our Lyapunov function approximation is defined as

G(st, at) = min
i=1,··· ,N

max
j=1,···T

E(sj , πi(sj))− E(st, at)

for N sample trajectories with the episode length T in the first loop of Algorithm 1. Suppose that c2
is some constant that is larger than min

i=1,··· ,N
max

j=1,···T
E(sj , πi(sj)) for any N,T . We now demonstrate

that Algorithm 1 reduces the probability of escaping from the control invariant set as the numbers of
iterations, N and M for the first and second loops, respectively, increase.
Assumption E.1. The difference ∥G(st, at) − G(st+1, at+1)∥ in Eq. (3) over the transition T is
bounded as ∥G(st, at)−G(st+1, at+1)∥ ≤ L for all t.

Proof. First note that P [τ ̸⊂ R] is less than the sum of the probability of E(st, at) ≥ c2 for all data
points in N trajectories and the probability that all M trials moves below E(st, at) ≤ c1. By using
Markov’s inequality for the first term of RHS and Hoeffding’s inequality for the second term of RHS.
Then, we have

P [τbest ̸⊂ R] ≤ (P [E(s, a) ≥ c2])
NT

+

(
P

[
T∑

t=1

1(Vt ̸= 1) ≥ κ(c2 − c1)

L

])M

≤
[E(s,a)∼D[E(s, a)]

c2

]NT

+ exp

(
−2Mκ2(c2 − c1)

2

TL2

)
for some constant κ to describe the average distance to escape.
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